创弗化工官网欢迎您!
二维码
全国咨询热线:18066227879
产品中心

按产品分类

按品牌分类

按温度分类

按性质分类

联系我们

正品制冷剂,假一赔百

地址:浙江省衢州市通衢路10号凯泰汽车城

Q Q:653202221

电话:18066227879

当前位置: 首页>>新闻资讯>>行业咨询

RC318制冷剂介绍2023最新

时间:2023-08-27 07:30:02 点击:24

热门问答

给些制冷剂资料?谢谢

有许多不同的以R22为基础的过度制冷剂(也称做维修制冷剂或直接转换混合物)。这些是作为暂时的R12或R502替代物而开发的。一些例子是是R401A,R401B,R409A和R409B作为R12的替代物,R402A,R402B,R403A和R403B作为R502的替代物。由于有R22的成分,它们都有一个低的臭氧破坏系数。丹佛斯压缩机适用于这些过度制冷剂。

HFC系列:R134a、R410A、R407C、R417A、R404A、R507、R23、R508A、R508B、R152a

RC318制冷剂介绍2023最新

HCFC系列:R22、R123、R124、R141b、R142b、R402A、R402B、R408A、R409A、R509A

CFC系列:F11、R12、R13、R502、R503

PFC系列:PFC-14、PFC-116、PFC-218

HC系列:R50、R170、R290、R600、R600a、R1150、R1270

其他制冷剂:自动复叠式制冷设备用超低温制冷剂,如Polycold、 Telemark深冷泵(光学真空镀膜机)混配冷媒,三洋超低温冰箱用混合冷媒等,以及超低温专用冷冻机油

制冷剂

百科名片

制冷剂

制冷剂又称制冷工质,在南方一些地区俗称雪种。它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。

目录

制冷剂概述

早期的制冷剂

—氯氟烃CFCs与含氢氯氟烃HCFCs制冷剂

臭氧层消耗:

我国《国家方案》中雪种淘汰时间表:

《国家方案》对空调行业规定了具体淘汰目标

对制冷剂性质的要求

制冷剂的一般分类

制冷剂概述

早期的制冷剂

—氯氟烃CFCs与含氢氯氟烃HCFCs制冷剂

臭氧层消耗:

我国《国家方案》中雪种淘汰时间表:

《国家方案》对空调行业规定了具体淘汰目标

对制冷剂性质的要求

制冷剂的一般分类

• 常用制冷剂的特性

• 制冷剂的命名方法

• 国内外较为知名的制冷剂品牌

展开

制冷剂

编辑本段

制冷剂概述

它的性质直接关系到制冷装置的制冷效果、经济性、安全性及运行管理,因而对制冷剂性质要求的了解是不容忽视的。

编辑本段

早期的制冷剂

1805年埃文斯(O.Evans)原创作地提出了在封闭循环中使用挥发性流体的思路,用以将水冷冻成冰。他描述了这种系统,在真空下将乙醚蒸发,并将蒸汽泵到水冷式换热器,冷凝后再次使用。1834年帕金斯第一次开发了蒸汽压缩制冷循环,并且获得了专利。在他所设计的蒸汽压缩制冷设备中使用二乙醚(乙基醚)作为制冷剂。

下表列出早期用过的制冷剂

年份 雪种 化学式

19世纪30年代 橡胶馏化物

二乙醚(乙基醚) CH3-CH2-O-CH2-CH3

19世纪40年代 甲基乙醚(R-E170) CH3-O-CH3

1850 水/硫酸 H2O/H2SO4

1856 酒精 CH3-CH2-OH

1859 氨/水 NH3/H2O

1866 粗汽油

二氧化碳(R744) CO2

19世纪60年代 氨(R717) NH3

甲基胺(R630) CH3(NH2)

乙基胺(R631) CH3-CH2(NH2

1870 甲基酸盐(R611) HCOOCH3

1875 二氧化硫R764) SO2

1878 甲基氯化物,氯甲烷(R40) CH3CI

19世纪70年代 氯乙烷(R160) CH3-CH2CI

1891 硫酸与碳氢化合物 H2SO4,C4H10,C5H12,(CH3)2CH-CH3

20世纪 溴乙烷(R160B1) CH3-CH2Br

1912 四氯化碳 CCI4

水蒸气(R718) H2O

20世纪20年代 异丁烷(R600a) (CH3)2CH-CH3

丙烷(R290) CH3-CH2-CH3

1922 二氯乙烷异构体(R1130) CHCI=CHCI

1923 汽油 HCs

1925 三氯乙烷(R1120) CHCI=CCI2

1926 二氯甲烷(R30) CH2CI2

早期的制冷剂,几乎多数是可燃的或有毒的,或两者兼而有之,而且有些还有很强的腐蚀和不稳定性,或有些压力过高,经常发生事故。

编辑本段

—氯氟烃CFCs与含氢氯氟烃HCFCs制冷剂

1930年梅杰雷和他的助手在亚特兰大的美国化学会年会上终于选出氯氟烃12(CFC12,R12,CF2CI2),并于1931年商业化,1932年氯氟烃11(CFC11,R11,CFCI3)也被商业化,随后一系列CFCs和HCFCs陆续得到了开发,最终在美国杜邦公司得到了大量生产成为20世纪主要的雪种。

下表列出第二阶段雪种开发时间:

年份 雪种

1931 R12

1932 R11

1933 R114

1934 R113

1936 R22

1945 R13

1955 R14

1961 R502

编辑本段

臭氧层消耗:

1985年2月英国南极考察队队长发曼(J.Farman)首次报道,从1977年起就发现南极洲上空的臭氧总量在每年9月下旬开始迅速减少一半左右,形成“臭氧洞”持续到11月逐渐恢复,引起世界性的震惊。

消耗臭氧的化合物,除了用于雪种,还被用于气溶胶推进剂、发泡剂、电子器件生产过程中的清洗剂。长寿命的含溴化合物,如哈龙(Haion)灭火剂,也对臭氧的消耗起很大作用。

氯原子和一氧化氮(NO)都能与臭氧反应, 正在世界大量生产和使用CFCs由于其化学稳定性好(如CFC12的大气寿命为102年)不易在对流层分解,通过大气环流进入臭氧层所在的平流层,在短波紫外线UV-C的 照射下,分解出CI 自由基,参与了对臭氧的消耗。

归纳起来,要使臭氧发生消耗,这种物质必须具备两个特征 :含氯、溴或另一种相似的原子参与臭氧变氧的化学反应;在低层大气中必须十分稳定(也就是具有足够长的大气寿命),使其能够达到臭氧层。例如氢氯氟烃雪种HCF22和HCFC123,都有一个氯原子,能消耗臭氧,其大气寿命分别为 12.1和14年,且氢原子相对活泼,能在低层大气中发生分解,到达臭氧层的数量就不多。因此HCFC22和HCFC123破坏臭氧的能力比CFCs小得多。

编辑本段

我国《国家方案》中雪种淘汰时间表:

1)自1999年7月1日,CFCs的年生产和消费量分别冻结在1995-1997年3年的平均水平;

2)自2005年1月1日,消减冻结水平的50%;

3)自2007年1月1日消减冻结水平的85%;

4)自2010年1月1日,完全停止CFCs。

编辑本段

《国家方案》对空调行业规定了具体淘汰目标

1)工商制冷

2003年停止CFC11/12新灌装,2010年停止CFC11/12维修补充的再灌装。

2)家电

1999年40%新生产的冰箱冷柜的替代,2003年70%新生产的冰箱冷柜的替代,2005年100% 新生产的冰箱冷柜的替代。

3)汽车空调

2002年停止新生产CFC12空调,2009年后在汽车空调上只允许使用回收的CFCs。

到目前为止,我国仅签署了《议定书》伦敦修正案,所以尚没对HCFCs的淘汰作出承诺。

编辑本段

对制冷剂性质的要求

(1)具有优良的热力学特性,以便能在给定的温度区域内运行时有较高的循环效率。具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等。

(2)具有优良的热物理性能 具体要求为:较高的传热系数、较低的粘度及较小的密度。

(3)具有良好的化学稳定性 要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解。

(4)与润滑油有良好互溶性

(5)安全性 工质应无毒、无刺激性、无燃烧性及爆炸性。

(6)有良好的电气绝缘性

(7)经济性 要求工质低廉,易于获得。

(8)环保性 要求工质的臭氧消耗潜能值(ODP)与全球变暖潜能值(GWP)尽可能小,以减小对大气臭氧层的破坏及引起全球气候变暖。

编辑本段

制冷剂的一般分类

根据制冷剂常温下在冷凝器中冷凝时饱和压力Pk和正常蒸发温度T0的高低,一般分为三大类:

1.低压高温制冷剂

冷凝压力Pk≤2~3㎏/㎝(绝对),T00℃

如R11(CFCl3),其T0=23.7℃。这类制冷剂适用于空调系统的离心式制冷压缩机中。通常30℃时,Pk≤3.06 ㎏/㎝。

2.中压中温制冷剂

冷凝压力Pk20 ㎏/㎝(绝对),0℃T0-60℃。

如R717、R12、R22等,这类制冷剂一般用于普通单级压缩和双级压缩的活塞式制冷压缩机中。

3.高压低温制冷剂

冷凝压力Pk≥20 ㎏/㎝(绝对),T0≤-70℃。

如R13(CF3Cl)、R14(CF4)、二氧化碳、乙烷、乙烯等,这类制冷剂适用于复迭式制冷装置的低温部分或-70℃以下的低温装置中。

编辑本段

常用制冷剂的特性

目前使用的制冷剂已达70~80种,并正在不断发展增多。但用于食品工业和空调制冷的仅十多种。其中被广泛采用的只有以下几种:

1.氨(代号:R717)

氨是目前使用最为广泛的一种中压中温制冷剂。氨的凝固温度为-77.7℃,标准蒸发温度为-33.3℃,在常温下冷凝压力一般为1.1~1.3MPa,即使当夏季冷却水温高达30℃时也绝不可能超过1.5MPa。氨的单位标准容积制冷量大约为520kcal/m3。

氨有很好的吸水性,即使在低温下水也不会从氨液中析出而冻结,故系统内不会发生“冰塞”现象。氨对钢铁不起腐蚀作用,但氨液中含有水分后,对铜及铜合金有腐蚀作用,且使蒸发温度稍许提高。因此,氨制冷装置中不能使用铜及铜合金材料,并规定氨中含水量不应超过0.2%。

氨的比重和粘度小,放热系数高,价格便宜,易于获得。但是,氨有较强的毒性和可燃性。若以容积计,当空气中氨的含量达到0.5%~0.6%时,人在其中停留半个小时即可中毒,达到11%~13%时即可点燃,达到16%时遇明火就会爆炸。因此,氨制冷机房必须注意通风排气,并需经常排除系统中的空气及其它不凝性气体。

总上所述,氨作为制冷剂的优点是:易于获得、价格低廉、压力适中、单位制冷量大、放热系数高、几乎不溶解于油、流动阻力小,泄漏时易发现。其缺点是:有刺激性臭味、有毒、可以燃烧和爆炸,对铜及铜合金有腐蚀作用。

2.氟利昂-12(代号:R12)

R12为烷烃的卤代物,学名二氟二氯甲烷,分子式为CF2Cl2。它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。R12的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。

R12是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。只有在空气中容积浓度超过80%时才会使人窒息。但与明火接触或温度达400℃以上时,则分解出对人体有害的气体。

R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。因此,在小型氟利昂制冷装置中不设分油器,而装设干燥器。同时规定R12中含水量不得大于0.0025%,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。否则,会造成密封垫片的膨胀引起制冷剂的泄漏。

3.氟利昂-22(代号:R22)

R22也是烷烃的卤代物,学名二氟一氯甲烷,分子式为CHClF2,标准蒸发温度约为-41℃,凝固温度约为-160℃,冷凝压力同氨相似,单位容积标准制冷量约为454kcal/m3。

R22的许多性质与R12相似,但化学稳定性不如R12,毒性也比R12稍大。但是,R22的单位容积制冷量却比R12大的多,接近于氨。当要求-40~-70℃的低温时,利用R22比R12适宜,故目前R22被广泛应用于-40~-60℃的双级压缩或空调制冷系统中。

4. R-134a(代号:R134a)

分子式 : CH 2 FCF 3 (四氟乙烷) ,分子量 :102.03

沸点 :-26.26℃ , 凝固点 :-96.6°C ,临界温度 :101.1 ℃ ,临界压力 :4067kpa

饱和液体密度 :25℃ , 1.207g/cm 3 ,液体比热 :25℃ , 1.51KJ/(Kg•℃)

溶解度 ( 水中, 25℃ ) :0.15% ,临界密度 :0.512g/cm3

破坏臭氧潜能值( ODP ) :0 , 全球变暖系数值( GWP ) :0.29

沸点下蒸发潜能 :215 kJ/kg

质量指标 : 纯度 ≥ 99.9 % ,水份PPm≤ 0.0010,酸度 PPm≤ 0.00001 ,蒸发残留物PPm≤ 0.01

R134a作为R12的替代制冷剂,它的许多特性与R12很相像。

R134a的毒性非常低,在空气中不可燃,安全类别为A1,是很安全的制冷剂。

R134a的化学稳定性很好,然而由于它的溶水性比R22高,所以对制冷系统不利,即使有少量水分存在,在润滑油等的作用下,将会产生酸、二氧化碳或一氧化碳,将对金属产生腐蚀作用,或产生“镀铜”作用,所以R134a对系统的干燥和清洁要求更高。R134a对钢、铁、铜、铝等金属未发现有相互化学反应的现象,仅对锌有轻微的作用。

R134a 是目前国际公认的替代 CFC-12 的主要制冷工质之一,常用于车用空调,商业和工业用制冷系统,以及作为发泡剂用于硬塑料保温材料生产,也可以用来配置其他混合致冷剂,如 R 404a 和 R 407c 等。

5. R-404A制冷剂

物化特性:R404A是一种不含氯的非共沸混合制冷剂,常温常压下为无色气体,贮存在钢瓶内是被压缩的液化气体。其 ODP 为 0 ,因此R404A是不破坏大气臭氧层的环保制冷剂。主要用途:R404A 主要用于替代 R22 和 R502 ,具有清洁、低毒、不燃、制冷效果好等特点,大量用于中低温冷冻系统。

6. R-410A制冷剂

物化特性:常温常压下, R410A 是一种不含氯的氟代烷非共沸混合制冷剂,无色气体,贮存在钢瓶内是被压缩的液化气体。其 ODP 为 0 ,因此R410A是不破坏大气臭氧层的环保制冷剂。

主要用途:R410A 主要用于替代 R22 和 R502 ,具有清洁、低毒、不燃、制冷效果好等特点,大量用于家用空调、小型商用空调、户式中央空调等。

编辑本段

制冷剂的命名方法

(1)无机化合物

无机化合物的简写符号规定为R7()。括号代表一组数字,这组数字是该无机物分子量的整数部分。

(2)卤代烃和烷烃类

烷烃类化合物的分子通式为CmH2m+2;卤代烃的分子通式为CmHnFxClyBrz(2m+2 = n+x+y+z),它们的简写符号规定为R(m-1)(n+1)(x)B(z)。下图为一些制冷剂的符号举例

(3)非共沸混合制冷剂

非共沸混合制冷剂的简写符号为R4()。括号代表一组数字,这组数字为该制冷剂命名的先后顺序号,从00开始。

(4)共沸混合制冷剂

共沸混合制冷剂的简写符号为R5()。括号代表一组数字,这组数字为该制冷剂命名的先后顺序号,从00开始。

(5)环烷烃、链烯烃以及它们的卤代物

写符号规定:环烷烃及环烷烃的卤代物用字母“RC”开头,链烯烃及链烯烃的卤代物用字母“R1”开头。

(6

(6)有机制冷剂则在600序列任意编号

编辑本段

国内外较为知名的制冷剂品牌

国内:中化金冷、浙江巨化、江苏梅兰

国外:霍尼韦尔、杜邦、大金、英力士

无氟变频空调需要加氟吗,变频空调加氟要怎么判断

需要无氟空调需要加制冷剂吗需要加制冷剂。无氟空调指的是使用了不含氯元素的制冷剂的空调,而不是不使用制冷剂的空调。无氟空调也就是常说的“使用环保冷媒的空调”。在空调系统管路内制冷剂量不足的时候,就需要给系统管路补充加注适量制冷剂,以保证系统能给正常工作。肯定是要加制冷剂才能制冷1.先要确认制冷剂型号2.如是rc需要排空系统制冷剂,然后从新抽真空,再按照铭牌上的充注量充注。变频空调需加氟吗?需要。氟立昂是空调制冷系统中传递热量的媒介,必不可少。加氟是需要进行判断的,要是家里的空调使用的时间比较长,需要及时加氟,否则不但不能正常使用,还可能会缩短压机发寿命,甚至损坏压缩机,下面看看怎么判断变频空调要加氟:1、变频空调要加氟可以试:变频空调正常开启一段时间后吹到身上的风感到很凉,并能很快达到设定温度,室外的压缩机能像电冰箱一样开一会儿停一会儿,就可以说是正常的。2、测:用温度计测量室内机的进、出风口的温差,差值在8℃以上为正常,温差越大说明变频空调的工作情况越好,好的可达15℃左右。3、看:在开机十几分钟后,打开室内机面板,应看到蒸发器(铜管上穿满铝片进行热交换的部件)上均匀布满冷凝水(像露水一样),为正常(空气湿度大时多,反之较少)。如果一半有一半没有,可能为缺氟,变频空调要加氟,如局部结霜或结冰也不正常。是混合型制冷剂如果制冷剂量不够,只有用真空泵抽完系统制冷剂,后再一次性加足量制冷剂,只要压机动过再加就会有安全隐患,因制冷剂里有部分可燃气体,搞不好会爆炸,千万要一次性加好,它的压力是f22的倍左右,必须专用加氟表和管子,你用电子称按铭牌量加,冬夏一样一般买来的新空调,里面的氟利昂足够你用个7到10年了,如果长时间使用的空调制冷效果突然不好时,可以考虑是氟利昂不足了。1、变频空调虽然不是加氟,但还是要加制冷剂的,氟也是制冷剂的一种。2、目前变频空调基本上是用的是RA制冷剂,不是原来的氟利昂R22。由于RA不含氯离子,所以使用RA制冷剂的空调也称为无氟空调。3、变频空调的省电效果,在连续使用时才会较明显。如果只是短时间使用,并没有多在的省电效果的。无氟变频空调需要加氟吗?随着我国“禁氟”令的深入实施,无氟空调的全面推广已排上日程。按照有关规定,我国将从年开始逐步淘汰目前绝大部分家用空调使用的氟利昂制冷剂。不过,此氟非彼氟,目前普遍推行的无氟空调,并非没有“氟”,而是采用含有氟元素的环保制冷剂。消费者需走出对无氟空调的理解误区。无氟空调并不是指空调的制冷剂里不含氟,而是不含氟氯烃。同时,无氟空调是使用环保制冷剂替换了传统制冷剂,而加氟是加制冷剂的俗称,如果制冷剂不足就得添加。由于对消费者说某空调产品“不含会破坏臭氧层的氟氯烃”,有点拗口,因此业内约定俗成地称之为“无氟”。1、无氟变频空调具有更高能效、更节能。目前能效比最高的空调,最高的是海尔KFR-26GW/02S(R2DBPXF)-S1的能效比可以达到6.912、无氟变频空调具有更快的效率。以海尔为例,旗下无氟变频空调利用世界领先的PAM脉冲调幅技术、°正弦波直流变频技术和第三代涡旋压缩机技术融为一体,结合直流电机、智能环境检测化霜、领先的无氟新冷媒和超低温-20℃启动的四重节能保障。因此无氟变频空调制冷(热)更快。3、使用无氟变频空调更低碳。使用最高能效的变频空调(能效比6.91)运行24小时比普通变频空调省电5.2度,省下来的电相当于94只11W节能灯每天5小时的用电量,相当于少向大气排放了4公斤二氧化碳。从以上可以总结出“无氟空调”的主要优点就是既节能又环保,减轻地球负担。因此这是现在市场上大力推广的一种空调。1:无氟变频空调不用加氟。2:无氟变频空调加的制冷剂是ra。3:ra制冷剂的优势是制冷速度快并且环保。4:ra简介:是一种新型环保制冷剂,不破坏臭氧层,工作压力为普通r22空调的1.6倍左右,制冷(暖)效率更高。提高空调性能,不破坏臭氧层。ra新冷媒由两种准共沸的混合物而成,主要有氢,氟和碳元素组成(表示为hfc),具有稳定,无毒,性能优越等特点。同时由于不含氯元素,故不会与臭氧发生反应,即不会破坏臭氧层。另外,采用新冷媒的空调在性能方面也会又一定的提高。ra是目前为止国际公认的用来替代r22最合适的的冷媒,并在欧美,日本等国家得到普及。

制冷剂参数是什么作用

按制冷剂包含的成份可分为:

1、单一制冷剂

2、混合制冷剂。

单一制冷剂只含有一种化学物质,其热物理性能参数恒定不变,如,R134a、R152a等制冷剂都具有较高的能量效率。

混合制冷剂是由两种或两种以上制冷剂组成的混合物。

根据它在气液相平衡时气相和液相的组成是否相等又分为:

1、共沸混合制冷剂:气液相平衡时气液两相组成相等的属于共沸混合制冷剂(包括相平衡时

气液两相组成近似相等的近共沸混合制冷剂),

2、非共沸混合制冷剂。组成不相等的属于非共沸混合制冷剂。

共沸混合制冷剂的选用与节能共沸混合制冷剂在一定的压力下蒸发和冷凝时,气相和液相的组成不变,且能保持恒定的温度。它和单一制冷剂具有近似的热物理性能。这类制冷制是研究和应用最早、最成熟的制冷剂,现将已研究的共沸混合制冷剂列入表1中。

对于非共沸混合制冷剂,其在蒸发器中的蒸发过程及在冷凝器中的冷凝过程都是非理想混合过程。这两种非理想混合过程使得混合制冷剂在制冷系统中冷凝压力降低,蒸发压力升高,压缩机的排气温度降低。这就使得制冷机的压比降低,制冷系数提高,从而提高了制冷系统的能量效率。

表1 已研究的共沸混合制冷剂组成质量比标准沸点(℃)对工质热力性质的改善R12/R152a73.8/26.2-33.3比R12制冷量大17~18%R12/R2225/75-41.5蒸发温度比R22低R22/R11548.8/51.2-45.6制冷量比R22大13%R23/R1340.1/59.9-88.7制冷量比R13大R32/R11548.2/51.8-57.2单级压缩可达50℃以下R12/R3178/22-29.6空调工况制冷能力比R12大8%R31/R11455/45-12.5R124/RC31860/40-12.3有较低的冷凝压力R290/R2231.8/68.2-48.6R22/R115/R29044.9/47.1/8-47.4改善R592同润滑油互溶性R13B1/R3280/20-64.0R290/R11531.6/68.4-46.6

不同种类的混合制冷剂具有不同的热物理性质,这就会为制冷剂的优选提供了较大的余地。对于某一固定的制冷系统,在其最佳运行工况下,要求制冷剂必须具有特定的热物理性质。合理选用不同的共沸混合制冷剂使其满足这种特定的热物理性质,就可以提高制冷系统的热力学效率,从而达到节能的效果。

由于共沸混合制冷剂可使冷凝压力降低,而同时蒸发压力升高,这样在冷凝温度和蒸发温度不变的情况下,压缩机的压比就会减小,从而使压缩机的功耗降低。因此获得同样的制冷量时就只需较少的功。同时蒸发压力的升高会减小蒸发器的真空度,使蒸发器更稳定地工作,而冷凝压力的降低会使冷凝器在更安全的状态下远行。印度的制冷专家C.P.A RORA在第十五届国际制冷学会上发表的论文中,以共沸混合制冷剂R22/R12(85/15)为例肯定了这个效果。由于压比的降低,压缩机的容积效率得到改进,制冷量增加,性能系数提高,同时压缩机的电机温度也从87.5℃降低到70.3℃,电机启动线圈的温度从97.3℃降到58.3℃,对空调器的安全运转起了重要的作用。

采用共沸混合制冷剂能够使压缩机的排气温度降低,它与制冷剂的性质密切相关。研究证明制冷剂的热容越大或绝热指数越小,则压缩机的排气温度就越低。制冷剂R115、R114、RC318的热容都很大,它们作为混合制冷剂的组分都有降低压缩机排气温度的能力。如共沸混合制冷剂R22/R115(48.8/51.2)在冷凝温度44℃、蒸发温度-12℃的情况下,其排气温度为108℃,而采用单一制冷剂R22,其排气温度为133℃;采用R12时排气温度为112℃。

非共沸混合制冷剂的应用与节能非共沸混合制冷剂在蒸发和冷凝时,温度及气液相组成是不断变化的,正是由于它在蒸发器和冷凝器中的温度变化,在蒸发器和冷凝器中实现了非等温换热,表现出它自己独特的节能特点。现将正在使用和研究的非共沸混合制冷剂列入表2中。

非共沸混合制冷剂在相变过程中出现各组分的混合与分离现象。冷凝过程是高沸点组分冷凝和低沸点组分溶解的过程。其中各组分既要放出自己的液化潜热又要放出混合热,最终使单位制冷剂的冷凝热增大。而蒸发过程是低沸点组分解吸和高沸点组分蒸发的过程,此时各组分除吸收各自的汽化潜热外,还将吸收相应的分离热,结果使单位制冷剂的吸热量即制冷量增加。这是制冷系统在没有增加功耗的情况下增加了制冷量。同时制冷剂的单位容积制冷量也相应提高。研究表明,使用非共沸混合制冷剂后,制冷系统显著降低了能耗。例如R22/R114(50/50)非共沸混合制冷剂取代R22用于热泵,制冷系数提高了25%,R22/R11(50/50)在冰箱中取代R12后,功耗降低20%。

表2 已进行研究的非共沸混合制冷剂

组成质量比用途及研究成果R12/R1190/10用于热泵R12/R12B1不定用于制冷R12/R13B160/40用于制冷及热泵R12/R11450/50用于制冷比R12节能,用于热泵比R12节能16%R12/R142R12=50~70%用于热泵与纯组分节能10%R12/R143R143〈25%用于制冷R12/R22R22〉25%用于制冷及热泵,主要用于改善循环参数R22/R1150/50用于制冷,节能12%R22/R11450/50用于热泵,节能25%R13B1/R151a60/40用于热泵式空调器R142/R143R143〈35%用于热泵R22/R1130/70用于热泵,节能50%

非共沸混合制冷剂在相变过程中其气相和液相间的织成差异影响非共沸混合制冷剂的热力学性能。在相变过程中出现的气相和液相的组成的明显差异使非共沸混合制冷剂的各组分比较容易混合与分离,从而达到调节混合比的目的。一些民用空调器,在全年运行期间,外界的环境条件变化相当大,常规使用的单一制冷剂的空调器,如单一制冷剂R22的适用范围很小,它在某一特定气候条件下性能指标非常好。而在气候条件变化时性能指标就会下降。非共沸混合制冷剂因其相变时配比随之变化,对变工况运行的适应能力较强,可以根据气候条件变化来调整制冷剂各组分的浓度。如使用R22/R13B1,在夏季制冷时,以高浓度R22运行,在冬季供暖时以高浓度R13B1运行。使用这种非共沸混合制冷剂后,空调器全年能在较高的热力学效率下运行,具有显著的节能效果。

另外,采用非共沸混合制冷剂可以实现劳伦兹循环,其吸热平均温度较高,放热平均温度较低,因此具有较高的卡诺效率。如图1所示,当制冷剂在(a)给出的变温热源下工作时,理论上可以实现的逆卡诺循环为(b)中的abcda,而劳伦兹循环为(c)中的ABCDA,由图可以看出,对于逆循环即制冷循环,劳伦兹循环比相应的逆卡诺循环省功。

制冷剂R115

问题呢?

近年来我国的制冷空调行业得到了迅猛的发展,从国外引进了70多条冰箱生产线和150多条空调生产线。随着冰箱空调的逐渐普及,它们的能耗指标越来越受到人们的重视。节能型的冰箱、空调不仅能缓解我国能源紧张的局面,而且对减少温室效应也有重大的作用。冰箱与空调的节能有多种途径,其中选用以不必改变原来的制冷部件与机械新的制冷剂的方法可是一种最经济有效的方法。

制冷剂分为单一制冷剂和混合制冷剂。单一制冷剂只含有一种化学物质,其热物理性能参数恒定不变,例如,近几年新研制的R134a、R152a等新型制冷剂都具有较高的能量效率。混合制冷剂是由两种或两种以上制冷剂组成的混合物。根据它在气液相平衡时气相和液相的组成是否相等又分为共沸混合制冷剂和非共沸混合制冷剂。气液相平衡时气液两相组成相等的属于共沸混合制冷剂(包括相平衡时气液两相组成近似相等的近共沸混合制冷剂),组成不相等的属于非共沸混合制冷剂。本文着重探讨混合制冷剂的选用与制冷机械的节能。Pt

二、共沸混合制冷剂的选用与制冷系统节能

共沸混合制冷剂在一定的压力下蒸发和冷凝时,气相和液相的组成不变,且能保持恒定的温度。它和单一制冷剂具有近似的热物理性能。这类制冷制是研究和应用最早、最成熟的制冷剂,现将已研究的共沸混合制冷剂列入表1中。

对于非共沸混合制冷剂,其在蒸发器中的蒸发过程及在冷凝器中的冷凝过程都是非理想混合过程。这两种非理想混合过程使得混合制冷剂在制冷系统中冷凝压力降低,蒸发压力升高,压缩机的排气温度降低。这就使得制冷机的压比降低,制冷系数提高,从而提高了制冷系统的能量效率。

表1 已研究的共沸混合制冷剂

组成质量比标准沸点(℃)对工质热力性质的改善

R12/R152a73.8/26.2-33.3比R12制冷量大17~18%

R12/R2225/75-41.5蒸发温度比R22低

R22/R11548.8/51.2-45.6制冷量比R22大13%

R23/R1340.1/59.9-88.7制冷量比R13大

R32/R11548.2/51.8-57.2单级压缩可达50℃以下

R12/R3178/22-29.6空调工况制冷能力比R12大8%

R31/R11455/45-12.5

R124/RC31860/40-12.3有较低的冷凝压力

R290/R2231.8/68.2-48.6

R22/R115/R29044.9/47.1/8-47.4改善R592同润滑油互溶性

R13B1/R3280/20-64.0

R290/R11531.6/68.4-46.6

不同种类的混合制冷剂具有不同的热物理性质,这就会为制冷剂的优选提供了较大的余地。对于某一固定的制冷系统,在其最佳运行工况下,要求制冷剂必须具有特定的热物理性质。合理选用不同的共沸混合制冷剂使其满足这种特定的热物理性质,就可以提高制冷系统的热力学效率,从而达到节能的效果。

由于共沸混合制冷剂可使冷凝压力降低,而同时蒸发压力升高,这样在冷凝温度和蒸发温度不变的情况下,压缩机的压比就会减小,从而使压缩机的功耗降低。因此获得同样的制冷量时就只需较少的功。同时蒸发压力的升高会减小蒸发器的真空度,使蒸发器更稳定地工作,而冷凝压力的降低会使冷凝器在更安全的状态下远行。印度的制冷专家C.P.A RORA在第十五届国际制冷学会上发表的论文中,以共沸混合制冷剂R22/R12(85/15)为例肯定了这个效果。由于压比的降低,压缩机的容积效率得到改进,制冷量增加,性能系数提高,同时压缩机的电机温度也从87.5℃降低到70.3℃,电机启动线圈的温度从97.3℃降到58.3℃,对空调器的安全运转起了重要的作用。

采用共沸混合制冷剂能够使压缩机的排气温度降低,它与制冷剂的性质密切相关。研究证明制冷剂的热容越大或绝热指数越小,则压缩机的排气温度就越低。制冷剂R115、R114、RC318的热容都很大,它们作为混合制冷剂的组分都有降低压缩机排气温度的能力。如共沸混合制冷剂R22/R115(48.8/51.2)在冷凝温度44℃、蒸发温度-12℃的情况下,其排气温度为108℃,而采用单一制冷剂R22,其排气温度为133℃;采用R12时排气温度为112℃。

三、非共沸混合制冷剂的应用与制冷系统节能

非共沸混合制冷剂在蒸发和冷凝时,温度及气液相组成是不断变化的,正是由于它在蒸发器和冷凝器中的温度变化,在蒸发器和冷凝器中实现了非等温换热,表现出它自己独特的节能特点。现将正在使用和研究的非共沸混合制冷剂列入表2中。

非共沸混合制冷剂在相变过程中出现各组分的混合与分离现象。冷凝过程是高沸点组分冷凝和低沸点组分溶解的过程。其中各组分既要放出自己的液化潜热又要放出混合热,最终使单位制冷剂的冷凝热增大。而蒸发过程是低沸点组分解吸和高沸点组分蒸发的过程,此时各组分除吸收各自的汽化潜热外,还将吸收相应的分离热,结果使单位制冷剂的吸热量即制冷量增加。这是制冷系统在没有增加功耗的情况下增加了制冷量。同时制冷剂的单位容积制冷量也相应提高。研究表明,使用非共沸混合制冷剂后,制冷系统显著降低了能耗。例如R22/R114(50/50)非共沸混合制冷剂取代R22用于热泵,制冷系数提高了25%,R22/R11(50/50)在冰箱中取代R12后,功耗降低20%。

表2 已进行研究的非共沸混合制冷剂

组成质量比用途及研究成果:

R12/R1190/10用于热泵

R12/R12B1不定用于制冷

R12/R13B160/40用于制冷及热泵

R12/R11450/50用于制冷比R12节能,用于热泵比R12节能16%

R12/R142R12=50~70%用于热泵与纯组分节能10%

R12/R143R143〈25%用于制冷

R12/R22R22〉25%用于制冷及热泵,主要用于改善循环参数

R22/R1150/50用于制冷,节能12%

R22/R11450/50用于热泵,节能25%

R13B1/R151a60/40用于热泵式空调器

R142/R143R143〈35%用于热泵

R22/R1130/70用于热泵,节能50%

非共沸混合制冷剂在相变过程中其气相和液相间的织成差异影响非共沸混合制冷剂的热力学性能。在相变过程中出现的气相和液相的组成的明显差异使非共沸混合制冷剂的各组分比较容易混合与分离,从而达到调节混合比的目的。一些民用空调器,在全年运行期间,外界的环境条件变化相当大,常规使用的单一制冷剂的空调器,如单一制冷剂R22的适用范围很小,它在某一特定气候条件下性能指标非常好。而在气候条件变化时性能指标就会下降。非共沸混合制冷剂因其相变时配比随之变化,对变工况运行的适应能力较强,可以根据气候条件变化来调整制冷剂各组分的浓度。如使用R22/R13B1,在夏季制冷时,以高浓度R22运行,在冬季供暖时以高浓度R13B1运行。使用这种非共沸混合制冷剂后,空调器全年能在较高的热力学效率下运行,具有显著的节能效果。

另外,采用非共沸混合制冷剂可以实现劳伦兹循环,其吸热平均温度较高,放热平均温度较低,因此具有较高的卡诺效率。如图1所示,当制冷剂在(a)给出的变温热源下工作时,理论上可以实现的逆卡诺循环为(b)中的abcda,而劳伦兹循环为(c)中的ABCDA,由图可以看出,对于逆循环即制冷循环,劳伦兹循环比相应的逆卡诺循环省功。

格林柯尔不是生产环保制冷剂吗?

不是已有空调生产企业在使用了吗?春兰、新科、松下、科龙不是都有部分产品在使用R411A、R411B、R411C了吗,但是这样的产品出口的比较多,在市场上可以见到的就只有科龙双高效空调了。冰箱也不在只有R12、R134A、R600、R500了,也有R405A这样的高效环保制冷剂了

目前高效环保新型制冷剂主要有:一是美国的制冷剂HFC134a;二是德国的制冷剂R600a; 三是中国的混合制冷剂。

使用环保节能新型制冷剂的制冷系统与传统的R12、R22制冷系统的造价还有一定的差距,产家为了提高国内市场境争力,R22是他们的首选制冷剂。只有国家强制政策,才可以改变这种市场现象。

制冷剂的命名方法

制冷剂的代号最早是针对氟里昂而规定的,发文时世界上通用的是美国供暖制冷工程协会于1967年制定的标准(ASHRAE Standard 34-67)中的规定。这一标准的编号方法是将制冷剂的代号同它的种属和化学构成联系起来,只要知道它的化学分子式,就可以写出它的代号。代号是由字母“R”和其后边的数字组成的。R代表制冷剂(制冷介质) “Refrigerant”,以前F代表氟里昂“Freon”,发文时都用国际公认的R命名制冷剂。

(1)无机化合物类制冷剂

如氨命名为:R717(分子式NH3)

“7”代表无机化合物类,17为其分子量的整数部分。

(2)氟里昂制冷剂

氟里昂是饱和碳氢化合物(烷族)的卤族元素的衍生物的总称。

饱和碳氢化合物的分子式是:CmH2m+2 ,当H2m+2 被氟、氯或溴等部分或全部取代后,所得的衍生物就是 CmHnFxClyBrz ,这就是氟里昂的分子通式,且n+x+y+z = 2m+2 。

对于甲烷系,因为m = 1,所以n+x+y+z = 4

对于乙烷系,因为m = 2,所以n+x+y+z = 6

氟里昂的代号是由R(m-1)(n+1)(x)B(z)组成的。如果z = 0 ,则B可以省略,例如:

二氟一氯甲烷,分子式为 CHF2Cl ,m-1=0, n+1=2, x=2, z=0 ,因而代号为 R22。

二氟二氯甲烷,分子式为 CF2Cl2 ,m-1=0, n+1=1, x=2, z=0 ,因而代号为 R12。

(3)饱和碳氢化合物

代号的编号规则与氟里昂相同,

如:甲烷为 R50

乙烷为 R170

丙烷为 R290

但丁烷不按上述规则书写,而写成为 R600。

另外,如果属于同素异构物,在代号后边加字母“a”或在个位数上加一个数字,如:异二氟乙烷为 R152a ,异丁烷为 R601等。

(4)环状化合物

环状有机化合物是在R后边加上一个字母“C”,然后按氟里昂的编号规则书写,

如:六氟二氯环丁烷写作 RC316

八氟环丁烷写作 RC318等。

(5)非饱和碳氢化合物及它们的卤族元素衍生物

这一类制冷剂在R后边先写一个“1”,然后按氟里昂的编号规则书写。

如:乙烯为 R1150

丙烯为 R1270

二氟二氯乙烯为 R1112a等。

(6)共沸制冷剂

由两种或两种以上互溶的单组分物质,在常温下按一定的质量比或容积比混合而成的制冷剂。它的性质与单一制冷剂的性质一样,在恒定的压力下具有恒定的蒸发温度,且气相和液相的组份液相同。

共沸制冷剂在标准中规定在R后边的第一个数字为 “5”,其后边的两位数字按实用的先后次序编号。

如:R500、R501、R502…… R507

(7)非共沸制冷剂

由两种或两种以上相互不形成共沸溶液的单一制冷剂混合而成的溶液,溶液被加热时,在一定的蒸发压力下,较易挥发的组份蒸发的比例大,难挥发的组份蒸发的比例小,因之,气、液两相的组成不相同,且制冷剂在蒸发过程中温度是变化的,在冷凝过程中也有类似的特性。

在制冷剂编号标准中对非共沸制冷剂还未加以编号,只是留出R后边的400号的编号顺序,供增补编号使用。

如: R400、R401、R402、…R411

按蒙特利尔议定命名:

区分氟利昂对大气臭氧层的破坏程度。

CFC(氯氟化碳):不含氢,公害物,严重破坏臭氧层禁用

如:CF2Cl2 ——R12———CFC12

CFCl3 ——R11———CFC11

HCFC(氢氯氟化碳):含氢,低公害物质属于过渡性物质

如:CHF2Cl——R22———HCFC22

HFC(氢氟化碳):不含氯,无公害作为替代物,待研究开发

如:C2H2F4——R134a——HFC134a

制冷剂原理

利用一种在常温常压下沸点很低的化学物质做为工作介质,在一个工作系统内进行吸热和放热的物理变化,且在一个相对的空间对空气进行冷却。

当膨胀阀打开/关闭时,冷凝器的液位会发生改变,若储液器中没有“额外”的制冷剂,膨胀阀前端的液体量就可能不足,致使膨胀阀无法正常工作,造成整个系统变得不稳定。

扩展资料:

制冷的工作过程:压缩机将吸入低压端的气态制冷剂压缩成高温、高压的气态制冷剂,通过高压端排出至冷凝器进行散热,形成液态的制冷剂。

然后通过干燥过滤器送至膨胀节流阀后成液态的雾状进入蒸发器,经过蒸发器蒸发,变成气态并大量吸收热量,又进入压缩机内。如此反复循环而起到制冷的效果。

高压管路:压缩机出口→冷凝器→干燥器→膨胀阀出口处。

低压管路:膨胀阀出口处→蒸发器→压缩机进口。

参考资料来源:百度百科-制冷剂

今天给各位分享RC318制冷剂介绍的知识到此结束,如果能碰巧解决你现在面临的问题,别忘了关注创弗化工网!

服务热线

18066227879

扫一扫,联系我们